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Quantum Resource Estimation. There are 2 kinds of quantum register
in the simulation algorithm: the state registers, used to store the
wave function, and the ancilla registers, used to store the potential
energy and the intermediate calculation results. If we assume a
simulation of a d-dimensional system in which each Cartesian
coordinate is divided into a uniform grid of N � 2n points, the
representation of the wave function requires a total of nd qubits in
d registers. As for the ancilla registers, their total number will
depend on the complexity of evaluating the potential and the
kinetic energy. At least 1 register is always required, to be used as
the target of addition for the purpose of phase kickback. The ancilla
registers will require m qubits each, where m is chosen in such a way
that the registers can store the value of V(x) with desired accuracy,
in the form of a binary integer between 0 and 2m.

The time required for the simulation is the number of elementary
(1- and 2-qubit) gates required to perform the algorithm. Except in
trivial cases, the evaluation of the potential energy will be much
more complicated than that of the kinetic energy T, which is a
simple quadratic form. We therefore approximate the total gate
count as being equal to the complexity of evaluating the potential:
Even for the simple Coulomb potential, the error thus introduced
to the resource count is substantially �1%.

Coulomb Potential. The simulation of chemical dynamics depends
on computing the Coulomb potential, and here, we provide a
detailed count of the resources required for evaluating it on a
quantum computer. We begin by developing some necessary quan-
tum arithmetic.

For addition, we adopt Draper’s quantum addition algorithm (1),
which is based on the quantum Fourier transform (QFT), and
requires only 3

2
m2 controlled rotations. Although it is not asymp-

totically optimal (i.e., it scales as O(m2) and not O(m) as does the
schoolbook addition algorithm), it both has a small prefactor that
makes it attractive for the addition of small numbers, and it is easily
adapted for multiplication. Subtraction requires the same number
of rotations, except that they are performed in the opposite
direction.

We perform multiplication using the schoolbook method. The
first multiplicand is repeatedly bit-shifted and added to the accu-
mulator if the corresponding bit of the second multiplicand is 1.
Because each number has m bits, we need to make a total of m such
controlled additions (C-ADD). The product will have 2m bits, but
we will keep only the m most significant ones, essentially perform-
ing floating-point arithmetic. For the C-ADD, we first apply a QFT
to the accumulator, as in Draper’s algorithm (we will also apply an
inverse QFT at the end, and these 2 require n2 steps in all). Each
C-ADD requires 1

2
m2 CC-rotations, which each can be implemented

by using 2 CNOTs and 3 C-rotations. Hence, each C-ADD requires
5
2
m2 operations, giving a total of (5

2
m3 � m2) gates for a multipli-

cation. However, because half of the CC-rotations are to the
insignificant bits of the accumulator and are subsequently dis-
carded, we need to perform only (5

4
m3 � m2) gates for a multipli-

cation.
To compute the Coulomb potential, the distance r between 2

particles, r2 � (x2 � x1)2 � (y2 � y1)2 � (z2 � z1)2, must be known.
Evaluating r2 requires 3 subtractions and 3 squarings (the 2 addi-
tions are performed automatically because the squarings are really
additions that can use the same accumulator). For squaring, we

multiply the number by itself using the multiplication circuit, giving
the total requirement of (15

4
m3 � 15

2
m2) gates for computing r2. The

same computation would be used in momentum space for com-
puting p2 or for simulating a harmonic oscillator potential.

The evaluation of the Coulomb potential is complicated by the
need for a square root. Because evaluating �S is just as difficult as
evaluating 1/�S, we can find 1/r from r2 in 1 computation using the
Newton–Raphson method, with the iteration xn�1 � xn(3 � r2�xn

2)/2.
The number of iterations will depend on the desired final accuracy,
but numerical experiments show that for many ranges of S, 4
iterations suffice to compute 1/�S to within �0.03% over the
entire range. Each iteration requires 1 subtraction and 3 multipli-
cations (one of them bit-shifted due to the factor of 1

2
). So the

requirement for 1/�S is (15m3 � 18m2) gates, which, together with
calculating the distance r2, gives the total requirement for the
Coulomb potential as (75

4
m3 � 51

2
m2) gates for each pair of particles.

Potentials Fitted from First-Principles Calculations. When using the
Born–Oppenheimer approximation, one uses a potential V(x) that
is a function of only the nuclear coordinates. It is the total energy
of the molecule assuming that the electrons are in their ground state
given the potential induced by the nuclei at coordinates x. In
general, this ground-state energy is difficult to compute on a
classical computer. Thus, interpolation schemes may be used to
approximate V(x). Here, we analyze the computational resources
needed for such schemes.

We represent the potential as a d-dimensional interpolating
polynomial:

V�x� � �
k1,k2. . .kd�0

K

ck1k2. . .kd
x1

k1x2
k2. . .xd

kd

� �
k1�0

K

bk1
x1

k1 �
k2�0

K

bk1k2
x2

k2. . . �
kd�0

K

k1k2. . .kdx
d
kd,

which can be evaluated using Horner’s method starting with the
innermost sum. That is, one has to evaluate 1 order-K polynomial
in x1, K such polynomials in x2, and so on until Kd�1 polynomials
in xd. That is, the total number of polynomials that need to be
evaluated is ¥i�1

d�1Ki � Kd/(K � 1). In order that the results of
these calculations will be available as constants for higher-level
polynomials, all of the intermediate polynomial evaluations have
to be saved in temporary memory along the way. The number of
required registers is Kd�1/(K � 1).

Each polynomial that is evaluated has the form

P�x� � �
k�0

K

pkxk � p0 � x�p1
. . . � x�pk�2 � x�pk�1 � xpk���,

where pk is some constant. Therefore, each polynomial evalua-
tion requires precisely K additions and K multiplications. As we
have seen above, an addition requires 3

2
m2 operations and a

multiplication (5
4
m3 � m2), meaning that, in total, each polyno-

mial evaluation requires K (5
4
m3 � 5

2
m2) gates. Therefore, the

total number of gates required to calculate V is Kd�1 (5
4
m3 �

5
2
m2)/(K � 1) � Kd (5

4
m3 � 5

2
m2). Furthermore, the total qubit

requirement is ntot � nd � mKd�1/(K � 1).
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